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A continuum theory of elastic dielectrics including polarization gradient is obtained as the long-wave
approximation of a theory of lattice dynamics for the shell model of cubic ionic crystals. The additional
energy associated with the formation and relaxation of a free surface is obtained by considering the unbal-
anced charges and dipole moments on the surface. The material coefficients of the continuum theory are
related to the lattice properties, and their numerical values are calculated for Nal, NaCl, KI, and KCI.
The surface energy density of a free half-space predicted by the continuum theory is compared with experi-
mental results as well as other theoretical results based on discrete models.

1. INTRODUCTION

N the recent continuum theories of elastic dielectrics
the electromechanical interaction has been studied
by Toupin! and Eringen? by considering the stored
energy density to be a function of both strain and
polarization. Mindlin® presents a linear theory which
includes the polarization gradient in the energy density
as well as the strain and polarization, and predicts
surface effects due to deformation and polarization. He
also indicates the relation between polarization gradient
and the shell-shell and core-shell interactions of lattice
theories of crystals.

The purpose of this investigation is (1) to obtain a
continuum theory of elastic dielectrics of centrosym-
metric cubic crystals by means of the long-wave
approximation of the theory of lattice dynamics of
crystals using the shell model introduced by Dick and
Overhauser?; (2) to obtain the material coefficients of
the continuum theory in terms of the lattice properties
and calculate their numerical values.

In this formulation, a theory of lattice dynamics for
ionic crystals similar to the one derived by Woods,
Cochran, and Brockhouse,® which employs the one-ion-
polarizable model, is used to obtain the potential energy
of alkali halides. The energy due to the short-range
forces is obtained by extending Kellermann’s method®
to include the interactions of the shells of both the first
and second nearest neighbors as well as the interaction
of a core with its own shell.

For lattices of finite extent the energy associated
with the formation and relaxation of a surface is added
to the potential energy described in the preceding
paragraph. The surface energy is calculated for a half
space using the methods described by Tosi” and Benson
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and Yun,2 and the results of the boundary-value
problem given in Sec. 11.

For the resulting continuum theory, the values of the
material coefficients are calculated for Nal, NaCl, KI,
and KCl. The surface energy density predicted by this
continuum theory is compared with the results obtained
by Benson® and Shuttleworth™ based on discrete
models, and other experimental data.” '

2. SHELL MODEL

In this section a theory of lattice dynamics for ionic
crystals similar to the one derived by Woods, Cochran,
and Brockhouse? is presented systematically in order to
obtain from it a continuum theory of dielectrics with
polarization gradient by means of the long-wave
approximation, and to calculate the numerical values
of the material constants involved. In this theory, the
polarizable ion is represented by the “shell model.”
In the shell model the outermost electron shell is con-
sidered to be a rigid spherical “shell,” which can move
with respect to the massive ionic “core,” which consists
of the nucleus and the inner electron shells.

The notation followed is similar to the one used by
Born and Huang.® For a composite lattice consisting
of NV different atoms, their positions are given by

X k)= XD+ X (%), 2.1

where / indicates the cell origin and X (k) is the position
vector from this cell origin to each different atom within
the cell, thus & takes on the value 1 through N, with
X(k=1)=0. The vector joining two lattice points is
given by
XUV kE)=X(U; k) — XU F)
=—X(U'—I;F k). (2.2)

The components of the vectors X with respect to the
rectangular Cartesian coordinate system are indicated
by Greek indices X, The summation convention is
used only with respect to the Greek indices, while
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summation over the Latin indices is indicated by the

symbol 3.
The charge of the kth atom is given by

Zwg=(Xr+Yr)g,

where X g and V3¢ indicate the charges of the core and
shell of the kth atom, respectively, and ¢ denotes the
charge of an electron, ¢=1.6X107* C. For a dielectric
medium Y_; Zr=0.

For the shell model the positions of both the core and
the shell, before deformation are given by X(/; ). Their
positions after deformation are, respectively,

x!(l;k)=X(; )+ U %),
x(l; k)= X({; R)+U(; k) +W (I k), (24)

where U is the displacement of the core and W the
displacement of the shell with respect to the core (see
Fig. 1).

According to the shell model, the potential energy
consists of the following interaction energies between
different ions: core-core, shell-shell, core-shell, shell-core,
and the interaction energy of the core with its own
shell. Under the two-body-interaction approximation,
the potential ® which is invariant under rigid-body
translation and rotation can be written as

D=3 > {Pn(r)+Pr(rs) +Pr (rs) +Ps(rs)

12:240 24

2.3)

+ KW (L )Wl R)), (2.5)
where
r=|x(; k) —x'('; k)|,
re=|x'(l; k) —x*(V'; k)|, 2:6)

rs= |x2(; k) —x' (V5 K|,
ra=|x2(; k) —x2(U; )|,

where the prime over the summation sign indicates that
the summation is to be suppressed for (I;k)=('; k).
And ®y, ®5, $r, P1 represent the interaction energies
between the various elements of the different ions, and
K is the spring constant characterizing the interaction
between the core and the shell of the same ion. This
spring constant is related to the polarizability a; as

follows:
Kk= yk2q2/01k€0, (27)

where ¢ is the permittivity of vacuum with 1/4we,
=9X10° newton m?/C2.
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X

X

Fre. 1. Displacements of the core and the shell of a typical ion.

Expansion of Eq. (2.6) in a Taylor series about its
stable equilibrium configuration and the application of
the harmonic approximation yields

B= P+ B+ B, (2.8)

In Eq. (2.8) &, is a constant and ®; vanishes since
the stable equilibrium configuration corresponds to a
state of minimum energy and &, involves quadratic
terms in U(/; k) and W(J; k). Noting that

0P
9x%a(l; k) daig(l; k.')
R
Axia(l; k) 0xig(l; k)
where the second partial derivative
9%/ 0x%(L; k) dxig(l; ')
for U=W=0 can be defined by the operator as
Los(I—V; k)
=X (VR ENX(I—V; R,k

=®Ueg(I=V'; k),

U=W=0

(2.9)
=3 Piig(I—V; kK,

VE"

T=W=0

dZ

F[7%0as—Xa(I—=1V; kR ) X g(1—1'; bR ) ]—
r3dr

rdr?
d
; (2.10)

and
(1=1,2,3,4). (2.11)

By considering Egs. (2.9) and (2.10), it can be seen that
Pii,e are symmetric with respect to the Greek indices.
The harmonic approximation of (2.5) is then

r= 7’il U=W=0

P=Pg—3 2 {[PMap(I—1; Rk") —brirbur 2 PUapg(U—1"5k k") U k) Us(l'; ')

1kl k! 1

HLV (T3 ) = b T P13 BE T DI )

H[ P ap( =15 k") =0 2" D ag(I—1" 5 kK" ) IW ol R) Ul s &)

I

HLPPap(U =1 k") = burrdur 20 P¥apg(U—1"5 k") IWa(l; )W (U 1) + 3 3 KW o )W a3 £)}, (2.12)

1

where 8- is the Kronecker delta.
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The kinetic energy, in view of the Born-Oppenheimer approximation,? can be written as

T=% smUa(; R Ua(l; k), (2.13)
lk

where a dot indicates differentiation with respect to time. By letting L=7—®, and applying Hamiltonian’s
principle, the equations of motion become

meUa(l; ) =3 {[@Yap(—V s kk') — b1 3 ®Vap(i—1"5 Rk U k')
llkl

Vg

FLD g (U=l k") = brirbur 32" @V ag(U—=1"5 k") IW (V3K (2.14)

Vgt

0=2""{[ ¥ ap(—V; kK" ) —brrour 3" PHap(I—1"; k") JUs('; K')

1'% 1248244

+[q>22ag(l—l'; k,k') —_ Bkkf 511' ZI CI’HQBU—ZH; k,k//)]Wﬂ(ll; kl)} —-I(kWa(l; k) .

VIR

3. LATTICE WAVES

The equations of motion obtained above, Eqs. (2.14), comprise an infinite system of simultaneous linear differ-
ential equations. Due to the periodicity of the lattice, a reduction can be achieved by utilizing periodic plane-wave
solutions of the form

Ua(l; k)= Ua(k) expily- X(5 k) —wt], Wall;k)=Wa(k) expily- X(; k) —ot], 3.1)

where y is a wave-number vector. Substitution of the above wave solutions into Egs. (2.14) reduces the infinite
number of differential equations to a 3X2X N system of linear algebraic equations:

—miw*Ua(k) =/; {Nap(y; b,k ) Us(R)+Tag(y; kK )} W p(E')

0=3_ {T"ap(y; kR ) Up(k')+Sas(y; kR YWs(k')} —KiW (k) , (3.2)
-
where
Nog(y; k') =227 { DM ap(l—1V'; k,E') expil —y- KU—V'; Rk ) ] =61 2 PWap(—1; R E")}, (3.3)
= &

and Tap, T"ap, and Seg are defined in the same form as Vo in Eq. (3.3) except ®'44 is replaced by ®12,4, B2,

and 22,4, respectively.
Similarly, substitution of the wave solutions, Eqgs. (3.1), into the potential- and kinetic-energy expressions,

Egs. (2.5) and (2.13), respectively, yields
Y=2—®o=—% 2 {[Nas(¥; kK" ) Ualk) Us(k')+Tap(¥; kK ) Ua(R)W s(R')+ 1" ap(y; b,k YW (k) U(k')
Ukk!
+Sas(y; kK YW a(R)W s (k') — KW o(R)W o(k) Wexpil y- X(U; B) —wi ]2},  (3.4)
T=—10* T {mUa(b) Uul)(expily- X(; H)—oiD?) (3.5)
123
In the above expressions the squared exponentials must be taken as the square of the real part of the exponential.

This form of the potential-energy change, Eq. (3.4), is particularly useful for the long-wave approximation in

obtaining the continuum equations.
The potential-energy density for the continuum can be obtained from Eq. (3.4) by the long-wave



3528 ASKAR,

approximation as
lim i}*} % {Nas(y; &,k ) Ualk) Up(k')
+Tap(y; kK Ua(R)Ws(E')
+Tas' (y; kK )W a(k) Us(K')
H[Sas(y; kok") — b1 8apK i JW o (k)W (k) }
X(expily- X(£) D?,

where v,=a;X a,-a; is the volume of the unit cell.

The potential energy can be written as the sum of
two parts, one due to short-range forces and the other
due to long-range forces:

=843,

(3.6)

(3.7

where B and C are from the names of Born and Coulomb
and denote the short- and long-range interactions,
respectively. Consequently the coefficients defined by
Egs. (3.3) can also be written as the sum of their short-
and long-range parts, as

Nap=NPog+NCos, Tapg=TBasg+TC g, etc. (3.8)

4. LONG-RANGE INTERACTIONS

For the shell model, Fig. 1, the long-range part of
the potential energy is due to the Coulombic forces and

LEE, AND CAKMAK 1

can be written as

2
HC=1 / g
2
Uk dire
XXy XV YViXe YVilyp
><< pIEE IR ) 1)
71 (0] 73 Y4

One sees from Egs. (2.5), with the definition,
Eq. (3.7), that the four terms in Eq. (4.1) correspond,
respectively, to ®Cy, &%, 7, and ®¢g. The harmonic
approximation of Eq. (4.1) has the same form as
Eq. (2.12) with the coefficients %, replaced by ®¥,s
using Egs. (2.9) and (2.10) as

CCI)uag(l'—l’; k,k/) = @Cag(l—l'; k,k’)Zka' ,
C‘I)lzaﬂ(l—l,; k,k/) = @Caﬂ(l—l/; k,k’)ZkYk' 5
C‘Palgm(l——l/; k,k/) = q)cals(l—ll; k,k’) ViZy 5
C¢22aﬁ(l—l/; k,k’) = @Cuﬁ(l—l,; k,k/) YkYkl ,

where

4.2)

q* 1
Log(I—U;kEN)~.  (4.3)
r

mTEQ

B g(I—1's b k) =

For periodic waves Eq. (3.1), by considering Egs. (3.3)
and (3.4), the harmonic approximation of Eq. (4.1) can
be written as :

PC=dC+BC1—% 3 {[ZiZiC¥ap(Y; k') —brir 2 ZiZir Cap(0; k") JU (k) Ug(R")

12234 k'’

F[Z1Y i C¥ap(y; Rk ) =011 2 Zi Vi Cop(0; R,k ) JU o(R)W 5(R")
k’l

F LY 1ZiC*ap(y; R k") — bkt 2 ViZirCap(0; k") JW o(k) Up(R')
k’/

HLYRY i C¥ap(Y; k) = B0 Z—j ViV i Cap(0; k") JW o)W p(k') H{ (expil y- X(l; B) —wt])?},  (4.4)

where, according to (3.3),

‘I’Co=¢’C|U:W=o,

Lo “E)
PO =3 — U.(l;
e AU (l; k) lu—w—o (4.5)
9d¢
+— Wa(l; k)
OW (15 k) | sw =0
and
C*ap(y; kb)) =2 ®Cas(l—1'; k k')
ZI
Xexpil —y- X(I—V;kE)], (4.6)

Cas(0; kB =3 ®Cog(l—1'; k")
=

In Egs. (4.5) and (4.6) the prime on 3 suspends the
summation for (I; %)= ('; ).

It should be noted that C.g(0;%,k") is not obtained
from C*.(y;kk) as y—0, but comes from the
coefficients of the products of displacements under the
first summation sign of Eq. (2.12) with ¢®%,4 replacing
B,

The coefficients C*,5 and the form of ®¢ obtained
here are the same as those obtained by Ewald® in
studying the electrostatic field due to a dipole distribu-
tion in an infinite medium. Numerical values of C*,4 are
given by Kellermann® for NaCl.

The potential ¢, given in Eq. (4.4), is due to the
interaction of the electrostatic forces acting between all
the elements of the particles. As the purpose of this
investigation is to study the relation between the
lattice theory and the corresponding continuum theory
of dielectrics, it is necessary to identify those parts of ®¢
which correspond to the Maxwell and Lorentz fields,
respectively, in the long-wave approximation.
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The Maxwell electrostatic field is governed by the
following field equations:

v-P
V-E=———,

€0

VXE=0. .7

In order to make use of the above field equations the
dipole moment due to lattice deformations is averaged
over a unit cell; thus the polarization is defined as

P()= L5 2 UGH+TWE R, (49
Vg b

For periodic lattice waves of the form

P())=P expi[y- X()) —t], (4.9)
with
~ 4
P=—3 [Z:U(k)+ YW (k)] expily- X(k)], (4.10)
v, k
and similarly assuming a periodic electric field
E()=E expi[y- X() —ot]. (4.11)

Substitution of Egs. (4.9) and (4.11) into (4.7) yields
yays Ps
ly|? e .

(4.12)

o«

BC=PCH-PC—F >
Lkk!
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Consequently, the energy per unit cell, due to the
Maxwell self-field, is given by

YME=1, ; LE«(DPa(D+5eEa(D)Ea(D) ]
9*Yeys
- l%' Vaco| ¥ |2
+Zi Y Ua(R)W (k') +Z1 YiW a(k) Ug(K')
+YVi Ve Wa(k)W (k)]
X(expily- X(I; k) —wi])?.

Comparing Egs. (4.4) and (4.13) it is seen that
*yy8/Va€0| ¥| 2 1s included in C*5(y ; &,%).

In order to separate the part of the potential energy
due to the Maxwell self-field it is convenient to write
C* s, following Ewald,® as

[Z1Z1 Ua(k) Us(E')

(4.13)

¢ Yoy
C*ap(y; kok") = Cap(y; ksk') — — *Tﬂ )

(4.14)
Va€o Y 2

In the long-wave limit, y— 0, the first term of Eq. (4.14)

is regular and is equal to Cas(0; &,%") given in Eq. (4.6);

the second part is not regular and corresponds to the

Maxwell field. Substitution of Eq. (4.14) into (4.4)

yields

[Z1ZuCas(y; bk') — 11 . Z1Z 11 Cap(0; R,R") JU o(R) U (k')
k/l

F[ZeY 1 Cap(¥; kol —S1ir 3 Z1 Vi1 Cap(0; kR ) JU o(R)YW p(R")
k,l

+|:Yka/Cm3(y; k,k,) — Okx! Z YkaHCaa(O; k,k"):lWa(k) Uﬂ(k')
k’l

+[YkYk/Cag(y; k,k') — Ok’ Z Vi Yk"Caﬂ(O; k;k")]Wa(k)Wﬁ(kl)
kl/

*yays

va€0| ¥ |2

[ZuUs()+ Ve We(k) 2 U.,(k>+ykwa<k>]} (expily- X(5 0) —l])% (4.15)

Comparing the last term of the above expression with Eq. (4.13) it is seen that this is the part of the potential

energy due to the Maxwell self-field.

5. SHORT-RANGE INTERACTIONS

By following the definition given in Eq. (3.7), invoking the harmonic approximation as in Egs. (2.8) to (2.12),
and substituting the waveforms given in Eq. (3.1), the part of the potential energy corresponding to short-range
interactions is obtained by replacing N us, Tas, T"ag, and Sag by NBog, TBas, T'2ag, and SBag. The latter are defined

in accordance with (3.3) by replacing ® by ®5.
By using the definitions

Biiyg(y; kR) =3 Bdiig(1—1; k k') expil —y- X(—=V; k)],
ll

3.1)

Biigg(0; k') =3 Bdii(l—U3 k'), 4,j=1,2
l/
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the potential energy due the short-range interactions, similar to Eq. (4.4), can be written as

PB=PB+ BB —3 5 ([ BMop(y; kb)) —birr Y Bag(0; k") U (B) Up(R')

12234 k'’

F[Bap(y; k") — 6110 2 Bas(05 k,k") JU (R)W (')
o

—f-—[Bﬂag(y; k,k/) — Ok’ Z Bﬂaﬁ(o; k,k”)]Wa(k) Ug(kl)

K’

+LB%as(y; k:k') '_Bkk’(lzkaaﬁ"*_; B?2a(0; kk)) JW a(R)W (k') } - (expil y - X(5 &) —wt])*.  (5.2)

From Eq. (5.2), it is seen that the self-energy is included
in the part of the potential energy due to the short-range
interactions.

6. SURFACE ENERGY

The energy expression given in Eq. (3.4) and the more
detailed expressions for the long- and short-range
interaction energies given in Egs. (4.15) and (5.2)
apply for the case of an infinite lattice, since the
summation over / is carried over the whole space. For a
lattice of finite extent, the total potential energy is
obtained by taking the summation on I over the finite
lattice and adding to this, the change in the potential
energy of the ions due to the presence of a boundary.
This additional energy can be considered to be made up
of two parts®: the work required to remove the part of
the lattice on one side of the interface, while the rest of
the lattice is held in its original equilibrium configura-
tion, and the relaxation energy of the remaining part
of the lattice due to the deformation and polarization
of the lattice in going to a new equilibrium position.

Let the position of a lattice point on the surface be
denoted by X(L;K), where L,K denote points on the
free surface.

¢Zr Xa(—L;k,K)
LKk dmey | X(I—L; k,K) |3
_|_

(N

q[ZxUs(L; K)+YxWs(L; K)]

Let ®(LI; Kk) be the potential energy of interaction
of a lattice point on the free surface X(L;K) with an
arbitrary point X(/;k), and let ®'(Ll;Kk) be the
potential energy of interaction of a lattice point on the
free surface with a point in the part of the body lying
on one side of the free surface. Therefore, the part of
the surface energy associated with the removal of part
of the lattice, under the assumption that the ions remain
immobile and unpolarized, is

> [®(Ll; Kk)—®'(L1; Kk)].

LK1k

6.1)

This quantity is a constant for a given lattice and a
given surface orientation.

The deformation and polarization of the lattice
caused by the unbalanced forces due to the removal of
the part of the lattice on the exterior side of the free
surface contribute to the relaxation energy. Since the
deformation is confined to a small vicinity of the free
surface, only the particles on the first layer are con-
sidered to have dipole moments as well as charges,
whereas the particles inside are assumed to have point
charges only. Thus the relaxation energy can be
written as®

LZxUa(L; )+ Vil o(L; K) ][ Zi UalL s K') + Y WL K')]
g

LKL'K’

dreg| X(L—L'; K,K")|3
. ¢* XoL—L';K,K)Xs(L—L'; K,K")

3
4rre

| X(L—L"; K,K")|°

X[ZxUa(L; K)+ YW o(L; K) [ Zx Us(L'; K"+ Ve We(L'; K, (6.2)

where ¢[ZxU(L; K)+YxW(L; K)] is the dipole moment of a point on the free surface. The first sum in this
expression is the energy associated with interaction of the dipoles on the surface with the point charges inside
while the second sum corresponds to the interaction of the dipoles on the surface with the other dipoles on the
free surface. As can be seen, the term under the second summation sign in Eq. (6.2) is nonlinear in U,,W .. Ne-
glecting this part, Eq. (6.2) becomes

¢*Zir Xg(l—L;k,K)
LKk drey | X(I—L; k,K) |3

(6.3)

[ZxUp(L; K)+YWg(L; K)].

Introducing periodic waves, similar to those in Eq. (3.1), into Eq. (6.3), and combining them with Eq. (6.1),
the additional potential energy for the finite lattice due to the presence of a surface is given as
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¢S=LZI)< {T(L; K)+Bs(L; K)g[ Zx Up(K)+ YV Ws(K) ]-expil y- X(L) —wit ]},

where

T(L;K)=Y [®(Ll; Kk)—®'(Ll; Kk)],

Be(L; K)=2_ ——

3531

(6.4)

9Zx Xg(l;k)—Xe(L; K)

. (6.5)
 dwe | X(I; k) — X(L; K) |3

The change in the total potential energy for a finite lattice is given by adding Eqs. (6.4), (4.15), and (5.2). Thus

for ¢ =yB+y°+¢Y5, one has

y=—% 2 {[B"as(¥; kk") — b1 2 B ap(0; k" )+ 2121 Cap(y; k') — b1rr :; ZiZiCap(0; k") JU (k) Ug(R')

12734 k'’

+[B2ag(¥; kyk') —darr 2 B2ap(0; b,k )21V 1 Cap(y; k') — ki 3= ZiVrrCap(0; -,k JU o(R)W 5 (k")
kl/ k/l

+[B2ap(¥; kyk') — ki 2= B¥ap(05 -k )+ ViZiCop(Y; kok") —Skrr 3 YiZiarCap(0; k,k") JW o () Up(R')
k’l

k

H[B*ap(Y; k') — bk { Kidapt2 B ap(0;k,k")} ViV Cap(y; koK)
kl/

— kw2 ViV Cag(0; k") IW o(R)W (')} (expil - XU ) —i])* =% va(EalatheoLala)
l

K’

X (expil y- X(; k) ——wt])“’—i—%{ {T(L; K)+Bs(L; K)q[ZxUs(K)+ YW s(K)] expil y- X(L; K) —wt]}. (6.6)

7. ALKALI HALIDES

In this section the energy expression formulated in
the previous section is applied to alkali halides, that is
diatomic lattices, and expressions for the material
coefficients are obtained by using the one-ion-polarizable
model,® considering the short-range interactions of the
first- and second-nearest neighbors as well as the inter-
action of the core with its own shell, which is an exten-
sion of Kellermann’s work® where only the nearest-
neighbor interactions are considered, and invoking the
long-wave approximation. The numerical values of the
material coefficients for NaCl, Nal, KCl, and KI, are
calculated in Sec. 10.

Since the polarizability of the negative ion of an
alkali halide is usually an order of magnitude greater
than the polarizability of the positive ion, it is reason-
able to neglect the polarizability of the positive ion.
This simplified model is called the one-ion-polarizable
model.?

The potential energy for alkali halides is obtained
from Eq. (5.3), by specializing it for a diatomic lattice
and letting £=1 denote the positive ion, 2= 2 the nega-
tive ion, and setting ¥1=0 and W(1)=0, for the
one-ion-polarizable model.

As in Dick and Overhauser,* assuming that the short
range forces between the ions act only through their
shells, one has, similar to Eq. (2.5),

PB=§ X BBs(r)+2 KiWa(l; )Wa(l; k).

12730 24 ik

(7.1)

Considering Egs. (2.9) and (5.1), one can define

Bag(y; k k)= BUs(y; k') = B'ap(y; R k)

= B¥ap(y; kok') = B*as(y; koK) . (7.2)

Under the above specifications, by performing the
summations over k, k', the energy expression Eq. (6.6)
assumes the following form:

1[,: _% ; [{(Baﬁ(YJ 1:1) _Bdﬁ(o; 1;1)—Baﬁ(0; 1’2)+lel[caﬂ(y;171)—Caﬂ(o; 1)1)+Caﬂ(0; 1:2)])U«z(1)Uﬂ(1)

+(Baﬂ(Y; 1:2) +ZIZ2Caﬂ(Y; 1’2))Ua(1) Uﬁ(2>

H(Bap(¥;1,2)+21Y2Cap(¥;51,2)) Ua(1)W(2) }(expil y- X(1; 1) —wi])?

H{(Bas(¥;2,1)+222:Cas(y; 2,1)) Ua(2) Us(1)

+(Bas(¥;2,2) —Bas(0;2,2) — Bap(0; 2,1) +Z2Z5[ Cap(¥; 2,2) —Cap(0; 2,2) +Cap(0; 2,1) DU(2) Us(2)
+(Baﬁ(YJ 272) —Baﬂ(oa 272) _Baﬁ(o; 2>1)+Z2 Y2[Caﬂ(y: 2;2) _CGB(O; 2:2)]) Uﬂ(z)Wﬁ(z)

+(Ba13(Y7 2>1)+ Y‘A’ZICOIB(Y’ 2,1))Wa(2) Uﬁ(l)

+(Bas(¥;2,2) —Bap(0; 2,2) = Bap(0;2,1) + V2Z:[ Cap(¥; 2,2) —Cap(0; 2,2) +Cas(0; 2,1) DWa(2) Up(2)
+(_K25aﬂ+Baﬁ(Y; 2,2) —Baﬂ((); 2,2) —Baﬁ(o; 2’1)+ Y2Y2I:Caﬁ(Y; 272) _"Caﬁ((); 272)])Wa(2) Wﬂ(z)}
X(expi[y- X(;2) —wt])2]~zl: Va(BoP a2 ool n) (expil y - X () —wi])?
+§ {T(L; 1)+T(L; 2)+Bs(L; 1)9Z:1U(1) expily- X(L; 1) —wt]

+Bs(L;2)q[Z2Up(2)+ Y Wp(2)] expily- X(L; 2) —wt]}. (7.3)
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For cubic symmetry,
Bag(y;1,1)=Bas(y;2,2),
Caﬁ(Y; 1;1) = Cﬂﬁ(y; 2y2) )
T(L;1)=T(L;2)=T(L),

LEE, AND CAKMAK 1

Bdﬂ(Y; 172) = Baﬂ(Y§ 2;1) )
Caﬁ(Y; 132): Clxﬂ(Y; 251) )

(7.4)
Bs(L;1)=Bg(L;2)=Bgs(L).

The relation Bag(y;1,1)=Bas(y;2,2) is essentially an assumption which states the equality of the repulsion
forces between the second neighbors, positive-positive, and negative-negative ions. The other equalities are seen
to be exact by considering their definitions. Furthermore, for the short-range interactions being confined to the
first and second neighbors, by performing the summations according to Egs. (2.9), (5.1), and (7.2):

Bara(y; 1,1) = (Ads+Bs) [ cos(yatys)70+cos(Ya—p)rotcos(yaty4)70+ 08 (ya—y4)70]

Ba o (y;1,2)=2[ A1 cosyarot+ Bi(cosysrotcosy o) |,

+2Bs[cos(ys+y)r0+cos(vs—yy)ro], 03
‘ 7.5

Bag(y; 1,1)= (42— Ba)[cos(yatys)ro—cos(va—yp)rol, oB

Baﬂ(Y; 1;2)=07 a7

where the primes above the Greek subscripts suspend the summation over the repeated indices, a,8,y represent the
three orthogonal directions of the cubic lattice, 7, is the distance between the nearest neighbors and A1, By, As, Be
are related to the derivatives of the short-range interaction potential between the first and second neighbors:

AdBs(1—1;1,2)
A= —— y
ar? T=W=0
d®Bs(1—10;1,2)
B;= ,
rdr TU=W=0

8. LONG-WAVE APPROXIMATION

Going to the long-wave limit, in order to obtain the
corresponding continuum theory, one has to define a
potential-energy density as an average energy repre-
sentative of the medium. For this purpose consider that
the medium is divided into cubic cells with sides 27, and
centered around a particle. One can thus find the total
energy of the medium as the sum of the energies of these
cubical elements. One sees that the ions on the faces
of the cube belong to two cubes, those on the edges
belong to four cubes and those at the corners belong
to eight cubes. Thus the energy of a cubical element can
be found by weighting by 1, %, %, § the energies of the
ions at the center, on the faces, on the edges and at the
corners. This method has actually been used by Evjen
to evaluate the Madelung constant for a distribution
of charged particles.”

The expansion of the functions of y about y=0 are
taken only up to the terms which retain W and the first
gradients of U, W.

For long acoustic waves the displacement amplitudes
are taken as

U)=UQR)=u, WQ2)=w. (8.1)

Considering the definition of the polarization

Eq. (4.10), one has

B L s
Va

. Yqu

A+ (Zou+ Y w)eir XD |~

(8.2)

Va

A2®B5(1—1';1,1)
o dr?

a®Ps(1—1';1,1)

9= —

U=W=0

(7.6)

rdr U=W=0

In obtaining Eq. (8.2), only the first terms in the ex-
pansions of ¢ *® are retained and the fact that
Z1+Z>=0 is used.

In the resulting expression for the change in the
potential energy, which can be obtained by using
Eq. (7.4) and by substituting Egs. (8.1) and (8.2) into
Eq. (7.3), the summation over /, will be evaluated by
considering that the medium is divided into cubes of
sides 27,. Let the origin of the coordinate system be
X(;1). Thus the centers of the cubes correspond to
even values of /3, ls, /3 and are all occupied by positive
ions. Consequently, the summation over / can be written
in the following equivalent form:

);. {®(; D+2(052)}

6

=2 {e(; D43 X d(+m;2)

l(even) m1=1

18 26
+1 2 2(tmy D+ 2 2(+ms;2)). (8.3)
19

me=7 ma3=

In the above representation ®(/;1) denotes the energy
of the ion at X(/;1) and ®(+my;2), ®(+ms;2),
®(l+ms3;2) are the energies of the ions that are first,
second, and third neighbors to that at X(/;1). The
summations over m;1, ms, m3 are to be carried over the
6 first, 12 second, and 8 third neighbors. In this
summation, the values of the functions at X(I+m;k)
are to be expressed by the Taylor-series expansions
about the point X (I; 1).

For the summation over L, the values of the functions
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are similarly represented by their expansions about By performing the above described expansions and
X(L;1). summations, one has

Y= ~l(§m) {4(Bas(y;1,1)+Bas(y;1,2) — Bas(0; 1,1) — Bag(0; 1,2)
+Z[Cap(¥;1,1) —Cap(y; 1,2) —Cas(0; 1,1) +Cap(0; 1,2) DA +0(y*))uates
+4(Bas(y; 1,1) +Bas(y; 1,2) — Bap(0; 1,1) — Bas(05 1,2)
—Z1Vo[Cap(y; 1,1) =Cap(¥;51,2) = Cap(0; 1,1)+Cas(0; 1,2) DH0(y2)) (va/ Vog) 20 P
+2(—K38as—Bap(0; 2,1)+Bap(¥; 2,2) — Bas(0; 2,2)
+ V2V o[ Cap(¥;2,2) —Cap(0; 2,2) DA +-570%0,5yy5+0(y4)) (va?/ V¢ P o Py}
X(expi[y- X() =i ])?— 3 va(EalatbelaPo)(expily- X() —wl])?

1(all)

+§ {(27(L)+Bs(L)[0.Ls(14-0(y))+9Z:us(0(y))] expily- X(L) —wl]}. (8.4)

As a last step towards obtaining the continuum representation of the energy, consider the Taylor-series ex-
pansions of the coefficients Bag(¥; %,k") and Cus(y; k,k") about y=0.

For the groups of the coefficients Bas(y; k,k’) of the short-range forces in Eq. (8.4), by considering the expressions
obtained on the basis of first- and second-neighbor interactions, one has

Bap(y;1,1)+ Bap(y; 1,2) —Bas(0; 1,1) — Bag(0; 1,2) = — Byaspy,ys+0(y*),
Bas(y;2,2) —B(0;2,2) = — B yassy,ys+0(y%), (8.5)
Bap(052,1)= Bag,
where, by considering Eq. (7.5), the independent coefficients are
Buwawa=[A1+2(42+Bo)re®,  B'awara=2(4s4Bo)re?,
Byapg=(As—Bo)ri*=Bgaws, Baowpy=(A2—B)ri’=Byaap, (8.6)
By oy ar= (Bi+As+3By)ro?, B yaya=(42+3B)r?,
Byaw=2(41+2By).
Similarly,
Cap(y;1,1) —Cap(y;1,2) —Cap(0;1,1)+Cap(0; 1,2) = — Crassyy¥s+0(y*),

C.,ﬁ(y;2,2)—C,,,3(0;2,2)=0. (8'7)

In the last expression of Eq. (8.7), even though the function is bounded at y=0, its expansion is not permitted,
since it is not convergent. The numerical values of C,.ss have been calculated by Kellermann® for the NaCl
structure. For the independent coefficients he finds'

Cowarar=—1.28¢%/4mero=Crr¢?,
Cowwpp=0.35¢"/4mer0=Cparap = Caro?, (8:8)
Coraryar=0.64¢%/4meqro=Ciro®.

By using the expansions, Eqgs. (8.5) and (8.7), in Eq. (8.4), and replacing #ausy,ys(expily- X(/) —wt])? by

Ua, 18,3, Poexpi[y- X(L)—wt]) by Pa(x) etc., and replacing the summations over / and L by integrations over
the volume and the bounding surface, one obtalns

Bva5ﬁ+ZIZC'yaBB B"/asﬁ_ZIYZC'yaBﬂ
ll/=/ (—“’_‘-—"—ua,‘yuﬂ,ﬁ_{" o,y Pp,s+5(K2d aﬁ+Baﬂ)
v Y Vg Y1%?

Ppﬁ

+il(KodaptBag)re*dys+ B waﬁ] Pa +Ps, «s)dV / (EoPatbeoEa Ea)dV+/ (To+b°apPpna)dd, (8.9)
Vy?g?

10 Note that Kellermann’s definition of the coefficients with mixed indices are switched here. The same comment holds for his Ci.
and Cy4.
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where
To=2T(L)/A.,

b0us=10Bg(L)na(L)/Aq. (8.10)

A= 2r® denotes the area of a cell on the boundary and
no(L)=n.(L;1)=n,(L;2) is the unit normal to the
Lth cell on the boundary in the continuum limit. The
invariance of the energy under rigid-body rotations
eliminates the antisymmetric part of the displacement
gradient. Furthermore, by converting the surface
integral over b%gPgn. to a volume integral, Eq. (8.9)
can be written as

Y=yt f (0%sPp,at3a08PaPg
14

+%b7a5BPa,‘yP8,5+%67aéﬂsa7536

+d7abBPa,7Sﬁ8_Eapa—%éoEaEa)dV, (8.11)
where
S
and
Say=5(ta,yt1hy,a)
roq Xp(l; k) —Xp(L;2)
boaﬂ = Zk Mo 3
dreg by | X(L; R)—X(L;2)|?
(L,k) over the half space,
703
@ap=2(K1dapt+Bap) Vg
(8.13)
7’03
b7a58=[(Kﬂsaﬁ+Baﬁ)702578+817aﬁﬂ] )
Va2
B’ya53+Zl2C'ya5ﬂ
Cyadfp= >
1’03
B’yaﬁﬂ_ZlYZC'yaﬁB
Ayatp= ——————— .
Yzq

Yo is the part of the surface energy, which depends
on the bounding surface and the particular lattice under
consideration, but not on the deformation and polariza-
tion. Therefore, ¥, is present even at the initial state,
that is when all the field variables are zero, in the
bounded dielectric. Therefore, the difference in energy
with respect to the initial state is

Kb*¢0=/ Hav, (8.14)
Vv

where H is the total potential-energy density with
respect to the initial state

H=W(Say,Pa,Pan) ~esEaEa—EaPa, (8.15)

ASKAR, LEE, AND CAKMAK 1

and W is the energy density associated with deformation
and polarization

W=0"pPg,a+30aP aPs+3byas8P v Ps,s
+56va8S aySpst-dyassPa,vSps.  (8.16)
Comparison of Egs. (8.15) and (8.16) with Egs. (2.2),

(2.6), and (3.1) of Mindlin (Ref. 3) shows that they have
the same form for centrosymmetric cubic crystals.

9. CONTINUUM THEORY OF
ELASTIC DIELECTRICS

In this section, the procedure used by Mindlin® to
obtain the linear field equations for elastic dielectrics
is briefly outlined.

In a body occupying a volume V bounded by a sur-
face S, the total potential energy is given as

¢=/ HdV—I—/ ToA,
14 S

H= W(Sa'rrPa:Pa,'y) - (%GOEaEa'{_ EaPa> .

(9.1)
where
(9.2)

Ty is a constant surface energy in the absence of all
fields, Sup=2(#a,yv+2%y,o) is the linear strain, and #,,
Pq, and E, are the displacement, the polarization, and
the electrostatic field, respectively.

Introducing the electrostatic potential ¢ as Eq= —¢a,
the field equations and the boundary conditions are
obtained for arbitrary variations é#a, 6P, and d¢ from
the following variational equation:

t1 t1
5 / dt / Cpitatia—H)dV + / dt
to |4 10

x[ / (Fadtba"tE'u0Po)dV+ / taauadA:l=0, 9.3)
14 S

where f,, E%, and ¢, are the external body force,
external electric field, and the surface traction.
The variational equation gives the following field
equations, in V:
T'ya,’y—l_fa: Plic,
E7ﬂ,7+Ea_¢a+E0a: 0 ]
_50¢aa+Pa,a= 0’

and the boundary conditions, on .S,

9.4)

Nyl ya=1ta,

nyEya=0,

na(—eofdpalH+Pa)=0,

where {¢.] is the jump in ¢, across the surface and

oW oW e
Tga=Top=——, Esp=—— = .
3Sas oPsa’ aP,

(9.5)

(9.6)
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Taste I. Lattice parameters and the elastic constants.

7o agb C12 K, A 4, B, B,
1078 cm 10724 cm? 102 dyn/cm?e 108 dyn/cm 103 dyn/cm
Nal 3.23 7.10 0.3594 0.0754 0.0774 12.5 21.01 —0.10 —1.37 —0.23
0.359 0.071 0.072 20.35 cee —2.06 oo
NacCl 2.81 3.66 0.486 0.127 0.128 24.3 27.14 —0.07 —3.03 0.00
0.486 0.129 0.129 27.10 . —3.03 ce
KI 3.53 7.10 0.270 0.043 0.042 12.5 17.32 +0.11 —2.82 +0.44
0.270 0.053 0.052 16.24 co —1.58 oo
KCl 3.14 3.66 0.400 0.062 0.062 24.3 20.23 +0.14 —4.40 +0.79
0.400 0.083 0.083 22.09 oo —2.18 cee
a Reference 9, p. 26.
b C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., New York, 1956), p. 165.
¢ C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., New York, 1956), p. 93.
d Nal values from Table III, p. 988, Ref. 5.
For cubic symmetry, the second- and fourth-rank second of Egs. (8.13) for the surface (1,0,0) as
tensors are of the following form!!:
g b= —0.282(g/4meqts). (10.1)

App=Abag,
Ayasp= (An1—A15—2444)8yasp+ A126a+0p5
+ A 44(8a50 45+ as0py)
+ A17(80p0ys—0asbpy), (9.7)

where 8,4 is the Kronecker delta and 8,455 is unity when
all indices are alike and zero otherwise.

Using the symmetry conditions (9.7), the energy
density of deformation and polarization W becomes

W=0Pq,at3aPoPq
+3[(b11—b12—2b44)8vassPayPp.s
+012P a,aPp 5+ 3044(P st Ppa) (P gt P a)
+3071(Pas—Pp,a) (Pag—Pp,a) ]
+3[(c11—c12—2¢44) 8yas8S arSpst-C19S aaS 8
+2¢44S apSap ]+ [(d11—d12—2d44) 8y e8P ., vSs
+d19P a,aSpp+ dss(Pa g+ Pp,a)Sas].  (9.8)

The surface energy of the system is defined as the
total energy the system has in the absence of all external
forces and fields. By applying the chain rule, the
divergence theorem, and using the equilibrium equa-
tions and the boundary conditions, one obtains

Y= / HiV+ / Todd = / (To+1000sPana)dA. (9.9)
14 S S

Thus the surface energy density (energy per unit area)
is defined as
S=To+35[0%sPsnals, (9.10)
where Ty and %4 depend on the orientation of the
boundary surface.
10. NUMERICAL VALUES OF
MATERIAL COEFFICIENTS

The numerical value of the surface parameter 8%,
which is 8%, in this case, is obtained by evaluating the

1'W. P. Mason, Crystal Physics of Interaction Processes (Aca-
demic Press Inc., New York, 1966).

The value of the other surface parameter 7, in
Eq. (8.10) is taken from Benson,® who has evaluated
the sum given in Eq. (6.5) for both the (1,0,0) and
(1,1,0) surfaces.

The rest of the material coefficients are obtained by
considering Egs. (8.6) through (8.7) and (8.13) with
Egs. (9.7):

a=2[Ky+2(4:1+2B1) Jro*(Y29) 2,
bu= [Kz—i- 2(4:1+ 2By)+2(4 2+Bz):|7’05(y29)_2 ,
biz= (42— B2)ro*(V29) 2,
bas=3[Ko+2(A142B1)+2(A s+ Bs) Jro®(Voq) 2,
b= %EKTFZ(A 1+ 231) +4B2:|7’05(Y29)_2 ,
c11= [A 1+2(A 2+Bz)+c1:|7’0_1 ,
C12= (Az—B2+C2)7’0_1 ,
644=%(31+A2+32+C2+C3)7’0_1 ,
du=[4:1+ 2(A2+B2) —ZIY2CI:IrOZ(YZQ)_1 ,
d1o= [A2'—Bz—21Y2C2]7’02(Y29)~1 y
du= %[Bl‘*‘z(A 2+Bz) *Z1Y2(C2+C3)]7’02(Y2q)~1 N

where A1, Ay, By, Bs can be evaluated by using the
minimum property of the potential energy at equi-
librium and matching the experimental values of the
elastic constants ci1, 12, ¢4« With their corresponding
theoretical expressions. The Cauchy conditions still
hold for the shell model due to the central nature of the
interaction. The other fundamental coefficient K, is
related to the polarizability as of the negative ion
through Eq. (2.7). The experimental values used in
these computations as well as the calculated values of
K,, A1, As, By, By for Nal, NaCl, KI, and KCI are
given in Table I. Of the two sets of values for 4y, 4.,
By, B,, the upper row corresponds to the values ob-
tained by matching ci1, c12, and c4, whereas those of
the lower row are computed by restricting the short-
range interactions to the first neighbors only, i.e., for
As=By;=0, and matching ¢i1. In both cases the mini-
mum property of the energy is used. The other con-
stants appearing in the equations for the material

(10.2)
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TaBLE II. Material coefficients.
d;n(clx(x)ll:}cz d;goc(r%l(}% bu lb(;z dyn cm?/ C2b44 b du 107 dd}:rzl cm/C du

Nal 1.37 1.26 0.712 TXI0T 0356 0.356 sst T3 20
NaCl 174 1.44 0.688 TIXWOT g3 0314 a7 1% 24
KI 176 115 tio  TIXIOT - gsss osss a2 TiE i
KCl 2.43 1.29 1200 TEXIOT 0600 0.600 32 i 212
coefficients are where \

Vo= —7, Zi=41, ¢=16X10"1C N ) : (11.2)

, ’ (10'3) (a+€o_1)\ cubu

1/4weo=9X 10" dyn cm?/C2.

Of the material coefficients appearing in the energy
of deformation and polarization, Eq. (9.8), @, bag, das
(and ¢y, c44 for the lower row of Table I) are computed
using the quantities given in Table I and Eq. (10.2).
The numerical values of these material coefficients for
Nal, NaCl, KI, and KCl are given in Table II.

11. SOME QUANTITATIVE PREDICTIONS

The surface energy density is given by Eq. (9.10).
Part of this energy depends on the value of the polariza-
tion on the surface, which can be obtained as the solu-
tion of a boundary-value problem. In order to evaluate
the surface energy expression (9.10), and the displace-
ment of the half space bounded by the free surface
(1,0,0) of a centrosymmetric cubic crystal, Mindlin’s
solution? for this problem is used.

b1
U= — ——————e—Xl/)\ R
611)\(a+ eo—'l)
3o
Pi=———— X1
Mae+eY)
bz A1.1)
—_— e—X1/)\ R
(ae+1)
(8%)*

" Nate)’

TaBLE IIL. Surface energy density for the (1,0,0) surface.

~ A. Surface Energy

By substituting the values of T as given by Benson®
and the coefficients given in Tables I and II into the
last of Eqgs. (11.1), the surface energy density is ob-
tained for Nal, NaCl, KI, and KCl. These values are
compared in Table IIT with the results obtained by
Benson® and Shuttleworth?* based on discrete models
and the experimental data given in Table XXV of
Ref. 7.

B. Displacement of Free Surface

The displacement of the particles at the free surface
is calculated to be of the order of 1-3%, of the inter-
particle distance.® Table IV gives the displacement of
the free surface as predicted by the present analysis.

When comparing the results in Table IV, with those
obtained from a discrete model, one should remember
that the continuum analysis does not identify the
particles, but gives an average displacement of the
positive and negative ions.

C. Rate of Decay of Surface Effects

From the solution of the boundary-value problem for
the continuum, Eqgs. (11.1) and (11.2), one sees that the
surface effects decay as e=X*/*, From a discrete analysis
for the NaCl-type crystals, Madelung® found that the
displacements decay as an exponential function of the
distance from the free surface of the crystal. Further-
more, the surface effects are found to be confined to the
first very few layers of the surface. The parameter 7o/\
characterizing the rate of decay is computed to be of the
order of ~1.75 (see Table IV). Consequently the effects

Shuttle-  Experi- This
Benson? worthP mentalb analysis
2’ 2 2 2
0 (ergégm ) S (ergécm ) (ergécm ) (e}g/cm,g TasLE IV. Surface displacement and the decay parameter A.
Nal 170 —52 118 276 -39 131 o w/re A

NaCl 210 —52 158 214 300 —59 151 (1078 cm) %) (1078 cm) ro/A
KI 140 -27 113 B o —22 118 Nal 0.0670 2.08 1.54 2.11
—34 141 —24 1 NaCl 0.0798 2.84 1.30 2.13
Ka 175 =3 17 252 S < 0.0492 1.39 2.25 1.65
KCl 0.0373 1.19 241 1.30

a Ref. 8, Table 8-5, p. 229.
b Ref. 7, Table XXV, p. 102.
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at the second and third layers are approximately 15
and 3%, of those at the first layer.

D. Dispersion Relation

Acoustical plane waves in the infinite medium accord-
ing to this continuum theory are found to be dispersive.
The dispersion relation for the longitudinal and
transverse acoustic waves propagating in the (1,0,0)
direction are

M‘, 1/2
T -—;) , 1=1,2,3 (11.3)
Y1

where ¢=1 corresponds to the longitudinal waves and
1= 2,3 correspond to the transverse waves, and

¢\ /2 d1? ateit
9= — , M1= , Z\71=
0

w;= V,-yl(l -

7
cubu bu

cag\ Y2 dsd®
1)2=1)3=(—> , M2=M3=—-————-’
4 6‘44(544+b77)
Ne=N3= (11.4)

44+ 1
The corresponding group velocities are

dwi Mi —1/2
e
ay 1+Nyr?
M (142N D)
[1——_——1 ] (11.5)
(1+Nyi2)?

One notices that the group velocities are bounded by
91 and vs, the phase velocities of the longitudinal and
transverse waves of the classical theory of elasticity.

12. CONCLUSIONS

The shell model which allows for a mechanism of
ionic polarization is used in obtaining the total potential
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energy of ionic crystals. In this formulation the energy
due to the long-range forces is taken to be electrostatic
in nature, while the energy due to the short-range forces
is obtained by considering the interactions between the
shells of the first and second nearest neighbors and the
interaction of a shell with its own core. A continuum
theory of elastic dielectrics is obtained from the lattice
formulation by the long-wave approximation. In this
continuum theory, the potential-energy density is seen
to be a function of strain, polarization, the polarization
gradient. For the case of centrosymmetric crystals this
theory is the same as the one presented by Mindlin.?
However, this means of formulation allows one to
obtain the values of the material coefficients using the
properties of the discrete model and the experimentally
obtained values of c11, ¢12, Cas.

As can be seen from Egs. (10.2) and Table II the new
dielectric coefficients b1, ba4, b77 depend on Ko, A1, Ao,
By, B; whereas the coefficient b12 depends only on A4,
and B, which is due to the short-range interactions
between the second neighbors. Therefore, the numerical
value of b1s is many orders of magnitude less than the
numerical values of b11, b4, and byr.

In this paper the surface energy associated with the
creation of a free surface is considered to be made up of
two parts: one is associated with the removal of part of
the material and is a constant for a given surface and
the other is due to the relaxation of the free surface and
is a function of the field variables. The constant part is
present at the initial undeformed, unpolarized state
and the relaxation part is included in the total potential-
energy density and accounts for the presence of surface
effects.

Also, in order to obtain the value of the surface
energy density it is necessary to solve a boundary-value
problem with a free surface, since the definition of the
surface energy density, Eq. (9.10) involves the polariza-
tion on the surface, which is given by the solution of
the specific boundary-value problem.



